Haploidentical Transplantation An Overview ACBSCT Meeting September 2020

Mary Eapen MD MS Medical College of Wisconsin

A research collaboration between the National Marrow Donor Program (NMDP)/Be The Match and the Medical College of Wisconsin

Conflict of Interest

• I have no financial conflict of interest

Distribution of Donor Types in 2019 in the U.S

	Adults	Children
HLA-matched sibling	20%	25%
HLA-haploidentical relative	20%	20%
HLA-matched/mismatched unrelated adult	55%	35%
Umbilical cord blood	5%	20%

Courtesy CIBMTR June 2020

Haploidentical Relative Donor Transplants

- Increasing common approach to HCT in the US
 - Malignant and non-malignant hematologic diseases
 - Bone marrow or peripheral blood
 - GVHD prophylaxis
 - Post-transplant cyclophosphamide (PT-Cy)
 - Reduced intensity or myeloablative conditioning
 - Low dose TBI/cyclophosphamide/ATG
 - Alkylating agent/fludarabine ± ATG

Is a Haploidentical Relative Comparable to Matched Unrelated Donor?

- Donor selection varies between centers
- Some centers prioritize a haploidentical relative if a matched relative is not available
- So is a haploidentical relative comparable to a matched unrelated donor?
 - Post-transplant cyclophosphamide overcomes the HLA barrier – but to what extent?

MARROW TRANSPI ANT RESEARCH

Ciurea S, Blood 2015

Overall Survival 2019: Acute Myeloid Leukemia

& MARROW TRANSPI ANT RESEARCH

Overall Survival Haplo vs. MUD with Post-transplant Cyclophosphamide: Acute Myeloid Leukemia

TRANSPI ANT RESEARC

Courtesy CIBMTR July 2020

Haplo-HCT: Bone Marrow vs. Peripheral Blood Chronic Graft vs. Host Disease

MARROW TRANSPI ANT RESEARCH

Haplo-HCT: Bone Marrow vs. Peripheral Blood Overall Survival

& MARROW TRANSPI ANT RESEARCH

Donor age: Adult Unrelated Donors

- Younger donors are associated with best survival
 - For every 10-year increment in donor age there is a 5.5% increase in the hazard ratio for overall mortality
- So, are younger haploidentical donors better than older haploidentical donors?
- Are there other donor characteristics to consider?

Haplo-HCT: Donor Characteristics

- Strong correlation between:
 - Recipient age and donor relationship (r = 0.66, p<0.0001)
 - Donor age and donor relationship (r = -0.61, p<0.0001)
- No correlation b/w patient and donor age (r = 0.06, p=0.06)
- Higher mortality for patients aged ≥55 years

Overall survival by donor-recipient age and relationship

McCurdy S, Blood Adv 2018

Graft failure by donor-recipient age and relationship

& MARROW TRANSPLANT RESEARCH

McCurdy S, Blood Adv 2018

Summary: Haplo-HCT and Donor Characteristics

 Patient age is a more important predictor for survival than donor age or donor-recipient relationship

– Higher mortality in patients aged ≥55 years

- Avoid parents as donors: higher risk for graft failure
- Donor sex, parity, CMV serostatus, donor-recipient ABO match: not associated with outcomes

McCurdy S, Blood Adv 2018

Summary: Haplo-HCT for Leukemia

- Haploidentical relatives are suitable alternative donors:
 - When matched sibling is not available
 - In unselected populations: similar 2-year survival to that after matched unrelated donor transplant
 - Selected populations: HLA-matched unrelated is preferred (higher survival)
 - Similarly, HLA-matched sibling preferred
 - AML is the predominant disease
- Bone marrow or peripheral blood?:
 - Higher chronic GVHD with peripheral blood
 - No difference in survival

Outcomes: Allogeneic HCT for Sickle Cell Disease Event-free Survival Overall Survival

100 100 Matched sibling, 89% 80 MUD, 69% 80 Adjusted Probability, % Adjusted Probability, % Matched sibling, 96% 60 60 MUD, 82% MMUD, 63% Haploidentical, 84% MMUD, 85% 40 40 Haploidentical 49% 20 20 P<0.0001 P<0.0001 0 0 2 3 2 3 Years Years

MARROW TRANSPI ANT RESEARCH

Eapen M, Lancet Haematol 2019

Graft failure: Allogeneic HCT for Sickle Cell Disease

Summary: Allogeneic HCT for Sickle Cell Disease

- Event-free survival is highest in children aged <13 years and after matched sibling transplant HCT
- Mortality and graft failure higher after alternative donor HCT
- The data does not favor one alternative donor over another
 - However, higher graft failure with haploidentical and mismatched unrelated donor compared to matched unrelated donor HCT
 - Graft failure continued beyond 2 years after haploidentical donor HCT underscoring the need for continued follow-up

Considerations for HCT in Sickle Cell Disease

- Deciding whether to recommend HCT for sickle cell anemia is not straight forward
- Severity of disease vary and there are several disease modifying drugs
- To assist in counselling for HCT we propose a simple risk score
 - Developed and validated in a cohort of 1425 patients
 - Risk score was developed on age at HCT and donor type

Sickle Cell Risk Group Composition

Clinical characteristic	Risk group	HR	P-value
Age ≤ 12 years Matched sibling donor	Good Score = 0	1.00	<0.0001
Age ≤ 12 years Matched unrelated donor Age ≥13 years Matched sibling donor	Intermediate Score = 1	2.52	0.043
Age ≤ 12 years Mismatched donors Age ≥13 years Alternative donors	High Score = 2, 3	7.71	<0.0001

Outcomes by Sickle Cell Risk Group

Age yrs	Age score	Donor	Donor score	Total score	EFS	Death	Graft failure
≤12	0	Matched sib	0	0	92%	2%	6%
≤12	0	Haplo	2	2	62%	8%	30%
≤12	0	Matched URD	1	1	83%	8%	8%
≤12	0	Mismatched URD	2	2	68%	5%	27%
≥13	1	Matched sib	0	1	87%	7%	5%
≥13	1	Haplo	2	3	52%	10%	38%
≥13	1	Matched URD	1	2	50%	29%	21%
≥13	1	Mismatched URD	2	3	49%	23%	28%

Brazauskas R, Blood 2020

EFS by Risk Score in Sickle Cell Disease

Brazauskas R, Blood 2020

Considerations for Haploidentical HCT for Sickle Cell Disease

- Event-free survival
 - 3-year EFS ~60%; 10% mortality, 30% graft failure
 - Are patients willing to accept 10% mortality relatively early after HCT?
 - Or accept ~30% will experience recurrent disease?
 - What is mortality in a patient who did not receive HCT but may be eligible for HCT?
 - General population with sickle cell disease
 - UK: median age of survival, 67 years (single center)
 - US: median age of survival, 48 years (2 centers)

Aplastic Anemia: Haploidentical HCT

Characteristics	N = 94
Median age	23 years
Performance score 90-100	54%
HCT comorbidity index, ≥ 3	36%
Bone marrow/peripheral blood	81%/19%
Conditioning regimen	
TBI (2 Gy)/Cy/Fludarabine	75%
TBI (3 or 4 Gy)/Cy/Fludarabine	25%
GVHD prophylaxis: PT-Cy/CNI/MMF or MTX	100%
Transplant period	2014-18

Aplastic Anemia: Haploidentical Relative HCT Outcomes

& MARROW TRANSPI ANT RESEARCH

Courtesy CIBMTR September 2019

Aplastic Anemia: Matched Unrelated Donor Outcomes

Courtesy CIBMTR September 2019

Considerations for Haploidentical HCT in Aplastic Anemia

- Aplastic Anemia
 - Data reported to transplant registry suggest HLAmatched unrelated donor is preferred to mismatched relative
 - Graft failure is an obstacle
 - Data from single institution(s) suggest survival comparable to matched unrelated donor HCT
 - BMT CTN 1502: completed accrual
 - Results expected 2022

Summary: Haplo HCT for malignant and non-malignant hematologic diseases

- Hematologic malignancy
 - Haploidentical related donors extend the donor pool making transplantation accessible to patients likely to benefit from this treatment
 - Particularly relevant for minorities who face challenges identifying HLA-matched unrelated donors
- Non-malignant hematologic diseases
 - Sickle cell disease and aplastic anemia
 - We must improve current transplant strategies to overcome graft failure after haploidentical donor HCT and overcome GVHD after unrelated donor HCT

